Clustering and anchoring mechanisms of molecular constituents of postsynaptic scaffolds in dendritic spines.

نویسندگان

  • T Shirao
  • Y Sekino
چکیده

Recent technological progress has yielded great amounts of information about the molecular constituents of postsynaptic scaffolds in the dendritic spine. Actin filaments are major cytoskeletal elements in the dendritic spine, and they functionally interact with neurotransmitter receptors via regulatory actin-binding proteins. Drebrin A and alpha-actinin-2 are two major actin-binding proteins in dendritic spines. In adult brains, they are characteristically concentrated in spines, but not in dendritic shafts or cell bodies. Thus, they are part of a unique postsynaptic scaffold consisting of actin filaments, PSD protein family, and neurotransmitter receptors. Localization of NMDA receptors, actin filaments, and actin-binding proteins in spines changes in parallel with development, and in response to synaptic activity. This raises the possibility that clustering and anchoring of these characteristic molecular constituents at postsynaptic scaffolds play important roles in spine function. This article focuses on the clustering and anchoring mechanisms of NMDA receptors and actin filaments, and the involvement of actin-binding proteins, in dendritic spines, and the way in which characteristic postsynaptic scaffolds are built up.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis.

Dendritic spines have two major structural elements: postsynaptic densities (PSDs) and actin cytoskeletons. PSD proteins are proposed to regulate spine morphogenesis. However, other molecular mechanisms should govern spine morphogenesis, because the initiation of spine morphogenesis precedes the synaptic clustering of these proteins. Here, we show that synaptic clustering of drebrin, an actin-b...

متن کامل

Differential regional expression and ultrastructural localization of alpha-actinin-2, a putative NMDA receptor-anchoring protein, in rat brain.

Fast chemical neurotransmission is dependent on ionotropic receptors that are concentrated and immobilized at specific postsynaptic sites. The mechanisms of receptor clustering and anchoring in neuronal synapses are poorly understood but presumably involve molecular linkage of membrane receptor proteins to the postsynaptic cytoskeleton. Recently the actin-binding protein alpha-actinin-2 was sho...

متن کامل

Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors.

We used actin-perturbing agents and detergent extraction of primary hippocampal cultures to test directly the role of the actin cytoskeleton in localizing GABAA receptors, AMPA- and NMDA-type glutamate receptors, and potential anchoring proteins at postsynaptic sites. Excitatory postsynaptic sites on dendritic spines contained a high concentration of F-actin that was resistant to cytochalasin D...

متن کامل

Signalling mechanisms

Morgan Sheng’s research focuses on the molecular structure of synaptic junctions and on the mechanisms that regulate the formation, function and plasticity of excitatory synapses. Using biochemical and molecular genetic approaches, his lab has identified and characterized many of the specific proteins and protein– protein interactions that underlie the functional architecture of the postsynapti...

متن کامل

Activity of the AMPA receptor regulates drebrin stabilization in dendritic spine morphogenesis.

Spine morphogenesis mainly occurs during development as a morphological shift from filopodia-like thin protrusions to bulbous ones. We have previously reported that synaptic clustering of the actin-binding protein drebrin in dendritic filopodia governs spine morphogenesis and synaptic PSD-95 clustering. Here, we report the activity-dependent cellular mechanisms for spine morphogenesis, in which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience research

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 2001